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Pade method is used in the spectral domain estimation to classify both the remote sensing and the
biomedical signals. The first example presented from remote sensing is the sea wave classification while
the second example depicted from biomedical engineering field is the Epilepsy seizure type classification.
Feature extractions of both the Global Navigation Satellite Systems (GNSS) signal and the epilepsy seizure
from a human Electroencephalograph (EEG) signal are based on the poles location of the signal.
� 2019 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.
V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Signal modeling is a technique for building scientific model of
the real signals. The procedure of framework demonstrating
requires an estimation technique is applied to estimate value for
the adjustable parameters in the required model structure. At long
last, the assessment of the evaluated model to check whether the
model is sufficient for your application needs. In this research, Pade
technique is utilized and applied for two distinct applications.

First application is about remote sensing It has been generally
shown that signal transmitted from GNSS groups of Global Naviga-
tion Satellite System like (Global Position Systems (GPS) can be uti-
lized not just for positioning, likewise, for remote sensing.
Specifically, the outside of the sea convey data about the ocean sur-
face makes dissipated GNSS flag, and can be abused to locate its
geophysical properties (Sanei et al., 2007). It is characterized as
GNSS-Reflectometry, speaks to an imaginative way to deal with
sea remote (Mesbah and Boashash, 2004). It is called attention to
that GNSS-R for oceanography principally targets examining three
significant geophysical parameters, to be specific directional Mean
Square Slope (MSS), Significant Wave Height (SWH) and Mean Sea
Level (MSL). Subsequently, GNSS-R has both dispersed metric
(ocean unpleasantness, wind speed and course) and altimetry
(SWH and MSL) applications. Amazing worldly testing, worldwide
inclusion, and long haul GNSS mission lifetimes are among the
components of GNSS signals which strategy alluring, and especially
reasonable for watching the sea surface, which is profoundly factor
in reality, The space crucial by Surrey Satellite Technology Ltd UK-
DMC is utilized to measure the ocean surface unpleasantness uti-
lizing GPS-Reflected payload and a remote detecting satellite
transport Fig. 1 (Sanei et al., 2007; Mesbah and Boashash, 2004;
James et al., 2018; Kannathal et al., 2019; James, 2007; Iscan
et al., 2011; Kannathal et al., 2005; Kiymik et al., 2004; Liu et al.,
2002).

Another Application, Epilepsy issue happening inside the
human mind influences just around 1% of the United States popu-
lace. It is described by an unexpected strange terminating of neu-
rons prompts intermittent and nonstop Seizures (Lopes and da
Silva, 1975). The sorts of Seizures are general or fractional which
will be clarified.

Summed up seizures are exhibited as loss of cognizance. The
explanation of this kind of epilepsy is because of concurrent sei-
zures that consequences of cerebrum halves of the globe unusual
exercises. Incomplete seizures are all the more prompting loss of
memory, and engine conduct. These seizures happen at the piece
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Fig. 1. Original signal and reconstructed signal.
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of the mind called epileptogenic center. That is the reason called
central epilepsy as well. Epileptic seizures will spread from type
to another sort for instance the central to sum up seizures. Fig. 2
shows the contrast between the incomplete and general EEG
chronicles (Han et al., 2018).

The most well-known database for epilepsy is MIT-BIT (Minfen
Shen and Chuan How Lin, 2010) which gathered at the Children’s
Hospital Boston. Subjects (5 guys, ages from 3 to 22; and 17
females, ages from 1.5 to 19) were recorded for in excess of twenty
four hours for the 23 patients without reflection (Chisci, 2010).

Ictal period is made out of a nonstop release of EEG waveforms.
It has a variable sufficiency and recurrence spike and sharp wave
edifices, cadenced hyper synchrony. Between ictal has period’s
electro mind latency seen over length shorter than the normal
term of these irregularities during ictal period. EEG examination
of patients experiencing epilepsy for the most part depends on
between ictal discoveries. In those between ictal EEG chronicles,
epileptic seizures are typically enacted with photograph incite-
Fig. 2. Different sea waves W1, W2 and W3 consequently.
ment, and different strategies. In any case, one shortcoming of
these incitement systems is incited epileptic seizures and not
really has a similar conduct as the unconstrained ones. The presen-
tation of long haul video-EEG accounts has been a significant
achievement giving not just the likelihood to catch and investigate
ictal occasions, yet additionally adding to important clinical data,
particularly in those applicants assessed for epilepsy medical pro-
cedure. Preceding the appearance of compact recording gadgets, all
EEG recording occurred in uncommon medical clinic units. The
presentation of convenient account frameworks (walking EEG), in
any case, has permitted outpatient EEG recording to turn out to
be increasingly normal. This strategy has focal points that patients
are recorded in their typical condition without the decrease in sei-
zure recurrence as a rule seen during a long (and costly) in-
persistent sessions (McSharry et al., 2003; Michel et al., 1999;
Miwakeichi et al., 2004; Aarabi et al., 2006; William and Evans,
1983; Khawani and Bajwa, 1975; El-Hefnawi, 1996; El-Hefnawi
and Mossaly, 1996; El-Hefnawi, 1996; El-Hefnawi, 1994; El-
Hefnawi, 1994; El-Hefnawi et al., 1975; El-Hefnawi, 1975; Bani-
Hassan et al., 2009; Marwa and El-Hefnawi, 2015; Theodoridis,
2010; Elsayed et al., 2012; Elsayed et al., 2015).

Strange states essentially saw in neurological scatters like sei-
zures in epilepsy. Latest examine centers around broadly accessible
databases, which are quickly portrayed from MIT-BIT (El-Hefnawi,
1996). This database, gathered at the Children’s Hospital Boston,
comprises of EEG chronicles from pediatric subjects with obstinate
seizures. Subjects were checked for as long as a few days following
withdrawal of hostile to seizure drug to portray their seizures and
survey their bid for careful intercession. The recorded EEG signal
was gathered from 22 subjects (5 guys, ages from 3 to 22; and
17 females, ages from 1.5 to 19) (Chisci, 2010). A study on epilepsy
seizure EEG signal demonstrating is accessible in writing (James,
2007; Iscan et al., 2011; Kannathal et al., 2005; Kiymik et al.,
2004; Liu et al., 2002). AR model is the most widely recognized
method utilized for EEG displaying since the element extricated
can be effectively distinguish the epileptic signal dependent on
its poles.

Fig. 3 shows the 8 s time of Epilepsy at EEG cathodes C3-C2, C3-
O1, C2-C4, Fp1-T3, Fp2-T4. The high recurrence signals are the sign
of her epilepsy seizures.
2. Pade approximation

The Padé estimate is a balanced capacity (El-Hefnawi and
Mossaly, 1996) that can be thought of as a speculation of a Taylor
polynomial. A normal work is the proportion of polynomials
(El-Hefnawi, 1994; Marwa and El-Hefnawi, 2015). Since these
Fig. 3. Functional description of multilayer perceptions (MLP).
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capacities just utilize the basic number juggling activities, they are
anything but difficult to assess numerically. The polynomial in the
denominator enables you to surmised capacities that have sound
singularities.

All the more unequivocally, a Padé estimation of request to a
scientific capacity at a standard point or shaft is the More précised,
a Padé approximation of order n; d to an analytic function f xð Þ at a
regular sample or pole x0 is the rational function P xð Þ=Q xð Þ where
P xð Þ is a polynomial of ndegree, Q xð Þ is a polynomial of degreed. If
d=n, the new equation is called a diagonal Padé approximation of
the ordern.

Letf xð Þ be the EEG signal, it shall be rewritten as:

f xð Þ ffi Pn xð Þ
Qd xð Þ ð1Þ

This EEG signal is Z samples formulated,

f xið Þ ffi Pn xið Þ
Qd xið Þ i ¼ 0; 1; . . . :; Z � 1 ð2Þ

where,

Pn xið Þ ¼
Xn
a¼0

aaxai i ¼ 0;1;2; :::;D� 1; ð3Þ
Qd xið Þ ¼
Xd

b¼0

bbx
b
i i ¼ 0;1;2; :::;D� 1; ð4Þ

where, a; b, are coefficients to be determined. Equation (1) can be
rewritten in the following,

f xið Þ:
Xd

b¼0

bbx
b
i ¼

Xn

a¼0

aaxai ð5Þ

Let b0 ¼ 1 (linear prediction constrains). Equation (5) shall be
implemented as,

f xið Þ ¼
Xn
a¼0

aaxai �
Xd

b¼1

f xið Þbbx
b
i ð6Þ

The application of equation (6) from points 0 to Z � 1, Z equa-
tions will be written in matrix form,

F½ � ¼ X½ �: A½ � ð7Þ

where,

F½ � ¼ f 0; f 1; f 2; :::; f D�1½ �T ð8Þ
A½ � ¼ a0; a1; a2; :::; an; b1; b2; :::; bd½ �T ð9Þ
Table 1
Classification Using THE NEURAL Network.

Trained Data size TN TP FN FP

NR 23 23 – – –
EP 23 – 23 – –
X½ � ¼

1 x0 ::: xn0 � f 0x0 � f 0x
2
0 ::: � f 0x

d
0

::: ::: ::: ::: ::: ::: ::: :::

1 xi ::: xni � f ixi � f ix
2
i ::: � f ix

d
i

::: ::: ::: ::: ::: ::: ::: :::

1 xD�1 ::: xnD�1 � f D�1xD�1 � f D�1x
2
D�1 ::: � f D�1x

d
D�1

2
6666664

3
7777775

ð10Þ
The unknown coefficients a0; a1; :::; an; b1; :::; bd½ � shall be imple-

mented by Gauss Technique for Z ¼ nþ zþ 1, or using the least
squares method for Z > nþ zþ 1 .

At long last, the denominator of the polynomial zeros are deter-
mined, posts the capacity, shall be highlight group of the EEG sig-
nal, encouraged to the ANN system classifier model to distinguish
heart arrhythmias and settle on the symptomatic choice.
3. Classification technique

Classifier model dependent on artifetial neural systems Artife-
tial Neural Network (ANNs) was used all through this examination.
In an ANNs structure, numerous straightforward, nonlinear prepar-
ing components, called neurons will be interconnected by means of
weighted neurotransmitters to frame a system. The capacity of
every neuron is to figure a weight total of all neurotransmitter
inputs, and subtract the aggregate from the predefined inclination,
and pass the outcome through a capacity whose yield goes some-
where in the range of 0 and 1. Fig. 3 shows the practical depiction
of a single neuron, that are the information, weight, inclination, net
capacity, move work and the yield of neuronseparately.

The ordinates fi are known by taking ap = 1 (linear prediction
constraints), equation (9) the most part can be unravelled straight-
forwardly for ta if D = 2P, or illuminated roughly by using the least
square method if D > 2P.

In the wake of registering a’s coefficients, the X’s can be deter-
mined as the base of condition (3). Condition (2) at that point turns
into a lot of direct conditions in R. Consequently, R can be estab-
lished from the principal P conditions (2).Also; the least square
procedures can be applied to the whole set Experimental.
4. Results and discussions

The Multilayer Perceptions (MLP) consists of three layers, the
first layer is the input layer neurons which are equal to the poles
number 400, the second layer is the hidden layer, and finally the
five neurons output layer. The training function used is the one-
step secant back propagations to adapt the weight and the bias
of the network. The transfer function used is the Tan-Sigmoid func-
tion in the first, and pure linear function is used in the output layer.
Pade method is faster compared to the Auto regression (AR) model
and relevance vector machine (RVM) byMin Han (Minfen Shen and
Chuan How Lin, 2010), which depicts that modeling is based on
poles location and number of poles could be used instead of AR
model where the Number of poles makes computation faster than
AR model, which based on both poles and zeros. The Pade method
is better than AR and RVM because the Pade method basis is not
sinusoidal signal but an exponential signal.

In the training phase the adaptation of the input and target are
based on the poles location which is distributed based on the epi-
lepsy type. After training, The appropriate weights to map the
inputs to the desired outputs is reached while an optimum order
of the polynomial is chosen in equation (1) that results in reducing
the Mean Square Error (MSE).

In the testing phase, the performance of the MLP classifier using
the Man square error (MSE) technique where the error is the differ-
ence between the target and actual network output. It is possible
minimize the error by increasing the number of poles up to 30 to
get the minimal error.

The EEG signal was obtained from the MIT-BIH Database
(El-Hefnawi, 1996) which is used for this work. Data Sets was
composed of 23 epilepsy cases with sampling rate at 250 sam-
ple/sec. Applying Pade Method to epilepsy yields reliable results

The Multilayer Perceptions (MLP) is produced using three lay-
ers; the information layer is equivalent to the shafts number, 400
neurons in the shrouded layer, and five neurons at the yield layer,
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one for each class. Table 1 shows the classification the 23 patients’
epileptic and normal cases.

5. Conclusion

The signal model depends on the area of the poles of the signal.
When we increase number of poles, we shall decrease the error
because of signal reconstructed and get faster response. The out-
come MSE diminishes exponentially. It is conceivable to expand
the request for the recreated signal polynomial up to 400 to per-
suade least error to be very near zero.
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